
LandUse / LandCover Classification using ResNet50
In search for better test patch size

Vaasudevan Srinivasan1, Dr. Yun Zhang1,2 and Mohammad Rezaee1,3

1Department of Geodesy and Geomatics, University of New Brunswick
2Course Instructor 3Teaching Assistant

Abstract

With the advancements in Deep Learning, particularly
Convolutional Neural Networks, LandUse / LandCover
classification in Remote Sensing can be thought of as
a computer vision task. This study presents a detailed
approach to training a well known ResNet50 model
based on Sentinel2 EuroSAT dataset and provides re-
sults of experiments conducted on different patch sizes
and also provides comparisions between those results.

Keywords: Deep Learning, Convolutional Neural
Network, Sentinel2, ResNet50, keras

Introduction
This work is hugely inspired from the intuition pro-
vided by Mohammad Rezaee and the work done by Ab-
dishakur [1]. Instead of focussing on the accuracy of the
model, this work experiments with the patch sizes. The
training and testing image size has to be the same in
CNN and this work showcases and compares different
patch sizes by performing upsampling and then test-
ing. This work also discusses the results of performing
enhancement before testing.

Methodology
Order of the work followed in this study is shown in
fig. 1.

ResNet
ResNet is the winner of the classification task in the
ILSVRC-2015 competition and it is characterized by a
very deep network with 50 / 101 / 152 layers. It was de-
veloped by He u. a. [5]. The deep ResNet configuration
addresses the vanishing gradient problem by employ-
ing a deep residual learning module via additive iden-
tity transformations. Specifically, the residual module
uses a direct path between the input and output and
each stacked layer fits a residual mapping rather than
directly fitting a desired underlying mapping. A com-
pressed ResNet model is illustrated in fig. 2

Figure 1: Work order followed in this study

Figure 2: Schematic diagram of ResNet model ([7])

Dataset
EuroSat (A land use and land cover classification
dataset based on Sentinel-2 satellite images) dataset
was used for training. (Dataset can be downloaded from
http://madm.dfki.de/downloads at no cost). Each im-
age has a size of 64 X 64 X 12 where 12 is the number
of bands.

The list of bands and its desription can be seen in
fig. 3.

Using Matplotlib ([6]), a simple bar plot showing the

http://madm.dfki.de/downloads


Figure 3: Sentinel2 Bands (Satellite-Imaging-Corp)

number of images per class was generated (shown in
fig. 4).

Figure 4: Training images per class

Figure 5: Visualization of classes available in the
dataset (Abdishakur)

Implementation
Using Keras.applications module (a high level API for
tensorflow) ([3]), ResNet50 model was imported and a
dense layer of 10 units (corresponding to 10 classes)
with a softmax activation function was added in the
end of the model. Rasterio module ([4]) was used to
read Green, Blue and Red bands (spatial resolution:
10m). OpenCV module ([2]) was used for upsampling.
Adam optimizer was used and the loss function used
was sparse categorical crossentropy. Below is the par-
tial summary printed when model.summary() method
is called.
________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
========================================================================================
input_2 (InputLayer) [(None, 64, 64, 3)] 0
________________________________________________________________________________________
conv1_pad (ZeroPadding2D) (None, 70, 70, 3) 0 input_2[0][0]
________________________________________________________________________________________
conv1_conv (Conv2D) (None, 32, 32, 64) 9472 conv1_pad[0][0]
________________________________________________________________________________________
conv1_bn (BatchNormalization) (None, 32, 32, 64) 256 conv1_conv[0][0]
________________________________________________________________________________________
conv1_relu (Activation) (None, 32, 32, 64) 0 conv1_bn[0][0]
________________________________________________________________________________________
pool1_pad (ZeroPadding2D) (None, 34, 34, 64) 0 conv1_relu[0][0]
________________________________________________________________________________________
pool1_pool (MaxPooling2D) (None, 16, 16, 64) 0 pool1_pad[0][0]

...

________________________________________________________________________________________
conv5_block3_out (Activation) (None, 2, 2, 2048) 0 conv5_block3_add[0][0]
________________________________________________________________________________________
max_pool (GlobalMaxPooling2D) (None, 2048) 0 conv5_block3_out[0][0]
________________________________________________________________________________________
dense_1 (Dense) (None, 10) 20490 max_pool[0][0]
========================================================================================

Total params: 23,608,202
Trainable params: 23,555,082
Non-trainable params: 53,120
_______________________________________________________________________________________

Training
Training was done for 30 epochs with batch size 500.
It was performed in the lab machine with Intel(R)
Core(TM) i5-3570S CPU @3.10GHZ; it has 4 cores with
8GB RAM. Training approximately took 18 hours. Be-
low is the minimal log of the training. Accuracy went
from 49% to 97% after 30 epochs.
Epoch 1/30
27000/27000 [======================] - 2123s 79ms/sample - loss: 1.7949 - accuracy: 0.4914
Epoch 2/30
27000/27000 [======================] - 2082s 77ms/sample - loss: 0.7430 - accuracy: 0.7348
Epoch 3/30
27000/27000 [======================] - 2073s 77ms/sample - loss: 0.5888 - accuracy: 0.7894

...

Epoch 30/30
27000/27000 [======================] - 2074s 77ms/sample - loss: 0.0580 - accuracy: 0.9784

Experiments
For testing (experimenting), 1000X1000 image of
Fredericton area was used. Matplotlib was used
for plotting and the whole work can be found at
https://github.com/VaasuDevanS/DeepLearning

Image size: 1000x1000; Patch size: 64 X 64
First, the test patch size of 64x64 was used (same as
the one used for training). The test image was padded
on all the sides with null values and 1,000,000 patches
were generated and predicted values were logged to a
file. This testing for the whole 1000x1000 image took

Page 2 of 5

https://github.com/VaasuDevanS/DeepLearning


almost a week and the results did not achieve sufficient
accuracy as seen visually in fig. 6. Though the same
patch size was used in both training and testing, 64 x
64 contains a huge amount of information for predicting
a single pixel (class) value.

Figure 6: Predictions - 64 x 64 patch size

Image size: 400x400; Patch size: 16 X 16
Next, the test area was reduced to 400x400 due to the
excessive computational time for the whole area. This
time, a patch size of 16 x 16 was used (this was cho-
sen randomly). Since the model was trained using 64 x
64 images, the testing image should also have the same
size. Hence all the 16 x 16 patches were upsampled to
match the training image size. The input 400 x 400
image was also padded on all the sides with null values
and 160,000 patches were generated and predicted val-
ues were logged to a file. This took almost a day and
as seen in fig. 7, the results were much clearer than the
previous one.

Figure 7: Predictions - 16 x 16 patch size

Comparision: 64x64 vs 16x16
On comparing the results between patch size 64x64 vs
patch size 16x16, as shown in fig. 8, 64 x 64 lost to 16 x
16 because of the vague information it holds to predict
the class for a single pixel.

Figure 8: Comparision between 64 x 64 and 16 x 16
patch sizes

Image size: 100x100; Patch size: 8 X 8
Since 16 x 16 results were better than 64 x 64, greedy
idea of trying with even lesser patch sizes was consid-
ered. For quicker analysis, the test image was even re-
duced to 100x100 and this time patch size of 8 x 8 was
used. After padding the 100x100 image, all the 10,000
patches were upsampled to 64 x 64 and then predictions
were saved to a file. As shown in fig. 9, the results were
unclear and this was because of the less information
available to predict the class for a single pixel.

Figure 9: Predictions - 8 x 8 patch size

Image size: 100x100; Patch size: 32 X 32
Next the same approach was followed for 32 x 32 patch
size and as shown in fig. 10, the results were clearly
unsatisfactory. 32x32 did a good job in predicting pixels
in the middle but did a horrible job along the edges.

Figure 10: Predictions - 32 x 32 patch size

Page 3 of 5



Comparision: 8x8 vs 16x16 vs 32x32 vs
64x64
The same 100x100 area was extracted from the
1000x1000 - 64x64 precition raster and 400x400 - 16x16
precition raster and then plotted together to get an
overall picture of the predicted results. This is shown
in fig. 11

Figure 11: Comparision between 64x64 and 16x16

Comparision: Enhancement
For another set of experimentation, linear enhancement
is applied to the test image (100x100) and tested for
different patch sizes. The comparison plot is shown in
fig. 12. From the results, it is clear that performing
enhancement and testing produces even worse results
than the predictions without any enhancement.

Figure 12: Comparision between predictions (original
vs enhanced test image)

Conclusion
This work used various test image sizes because of the
computational limitation (Note that the whole work is
done on a normal CPU machine. Google Colab was
used in the beginning but it was dropped because of
the 12-hour running restriction for free accounts). This

paper compares and discusses the results of experiment-
ing different patch sizes for testing. This choice actually
depends on the dataset and/or the knowledge of the re-
searcher. However to conclude the work, 16x16 patch
size (upsampled to 64x64) produces better results than
8x8, 32x32 or 64x64 and performing enhancement only
on the test image worsens the result. This is not a strict
conclusion to be followed but this work provides a gen-
eral idea of how results varies for different patch sizes
for EuroSat dataset and ResNet50 model.

References
Abdishakur: Land use/Land cover classification with Deep

Learning. https://towardsdatascience.com/land-
use-land-cover-classification-with-deep-
learning-9a5041095ddb. 2018. – [Online; accessed
24-Aug-2018]

Bradski, G.: The OpenCV Library. In: Dr. Dobb’s Journal
of Software Tools (2000)

Chollet, François u. a.: Keras. https://keras.io. 2015

Gillies, Sean u. a.: Rasterio: geospatial raster I/O for
Python programmers. 2013–. – URL https://github.
com/mapbox/rasterio

He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun,
Jian: Deep Residual Learning for Image Recognition.
In: arXiv preprint arXiv:1512.03385 (2015). – URL
https://arxiv.org/abs/1512.03385

Hunter, J. D.: Matplotlib: A 2D graphics environment. In:
Computing in Science & Engineering 9 (2007), Nr. 3,
S. 90–95. – URL https://matplotlib.org/

Mahdianpari, Masoud ; Salehi, Bahram ; Rezaee, Mo-
hammad ; Mohammadimanesh, Fariba ; Zhang, Yun:
Very Deep Convolutional Neural Networks for Com-
plex Land Cover Mapping Using Multispectral Remote
Sensing Imagery. In: Remote Sensing 10 (2018), Jul,
Nr. 7, S. 1119. – URL http://dx.doi.org/10.3390/
rs10071119. – ISSN 2072-4292

Satellite-Imaging-Corp: Sentinel-2A (10m) Satel-
lite Sensor. https://www.satimagingcorp.
com/satellite-sensors/other-satellite-
sensors/sentinel-2a/

Page 4 of 5

https://towardsdatascience.com/land-use-land-cover-classification-with-deep-learning-9a5041095ddb
https://towardsdatascience.com/land-use-land-cover-classification-with-deep-learning-9a5041095ddb
https://towardsdatascience.com/land-use-land-cover-classification-with-deep-learning-9a5041095ddb
https://keras.io
https://github.com/mapbox/rasterio
https://github.com/mapbox/rasterio
https://arxiv.org/abs/1512.03385
https://matplotlib.org/
http://dx.doi.org/10.3390/rs10071119
http://dx.doi.org/10.3390/rs10071119
https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/sentinel-2a/
https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/sentinel-2a/
https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/sentinel-2a/


Contact

Vaasudevan Srinivasan
Graduate Student (course based)
vaasu.devan@unb.ca
Personal Page

Dr. Yun Zhang
Professor
yunzhang@unb.ca
Official Page

Mohammad Rezaee
Post-Doctoral Fellow
Mohammad.Rezaee@unb.ca

Page 5 of 5

mailto:vaasu.devan@unb.ca
https://vaasudevans.github.io/
mailto:yunzhang@unb.ca
http://www2.unb.ca/gge/Research/rsgis/rsensing/
mailto:Mohammad.Rezaee@unb.ca

	Introduction
	Methodology
	ResNet
	Dataset
	Implementation
	Training

	Experiments
	Image size: 1000x1000; Patch size: 64 X 64
	Image size: 400x400; Patch size: 16 X 16
	Comparision: 64x64 vs 16x16
	Image size: 100x100; Patch size: 8 X 8
	Image size: 100x100; Patch size: 32 X 32
	Comparision: 8x8 vs 16x16 vs 32x32 vs 64x64
	Comparision: Enhancement

	Conclusion
	Contact

